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Abstract

An aerosol is a colloidal system consisting of particles in a solid or liquid state and of a gas

that surrounds the particles. The aerosol particles have important effects on our health via

the air we breathe as well as its visibility visibility and also on the climate.

Aerosol particles can be directly emitted to the atmosphere, but they are also formed when

atmospheric trace gases, such as sulfuric acid, ammonia, amines, various organic compounds

and water nucleate to form nanometer-sized clusters. The growth dynamics of these clusters

towards sizes where their effects on the climate are determined by condensation of available

vapors and the coagulation of particles with each other.

The volatile organic compounds (VOC), such as α-pinene, are a significant source of condens-

able vapor. VOCs become oxidized in the atmosphere to form organic compounds that can

partition into the particles. The two key quantities related to understanding the dynamics

of organic aerosol (OA) are 1) the volatility of the organic compounds and 2) the viscosity in

the particle phase. These are also properties that are challenging to measure directly. This

thesis presents and validates an alternative way to estimate both volatility and viscosity from

isothermal particle evaporation experiments by using process modelling and global optimiza-

tion methods. The validation was performed by using both modelled and experimentally

measured OA evaporation data: these showed that in the majority of the studied cases, the

method produces reliable estimates for the studied properties.

The process model optimization method was used to estimate the volatility and viscosity of

α-pinene SOA, i.e., secondary organic aerosol formed from the oxidation products of α-pinene.

A significant fraction of organic compounds with low volatility were needed to explain the

measured particle evaporation rates. A strong composition dependent viscosity was needed to

explain the evaporation dynamics in low relative humidity conditions. In most atmospheric

conditions near the surface of the earth, it was found that volatility was the most important

property for determining the SOA dynamics.

The ability of a state-of-the-art thermodynamic model to estimate the hygroscopicity, i.e,

the water uptake, of particles containing sulfuric acid, ammonia and dimethylamine (DMA)

was studied also in this thesis. The results revealed that the model underestimated the

hygroscopicity of DMA-containing particles when the particle size was in the order of a few

tens of nanometers prompting a need for further studies to clarify the thermodynamics of

DMA-containing solutions.

Keywords: SOA, volatility, viscosity, hygroscopicity
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1 Introduction

The average volume of inhaled air per minute by an adult is around 10 liters (EPA,

2011). Depending on both the location and time of the year, this volume of outdoor

air contains from 105 to 1010 solid or liquid particles (Seinfeld and Pandis, 2016).

The solid and liquid particles and the air surrounding them form a colloid called the at-

mospheric aerosol. If one assumes a global average particle concentration of 1 µgm−3 ,

then the lowest part of the Earth’s atmosphere, the troposphere, contains approxi-

mately 2 Tg of particles. These particles affect our life both positively and negatively

through the weather and climate, and they may even cause a variety of diseases.

This thesis focuses on quantifying some of the important properties of organic aerosol

particles; it is known that they affect the dynamics of atmospheric aerosols, but they

are difficult to measure directly. In particular, this thesis concentrates on how these

properties can be characterized by combining laboratory measurements and state-of-

the-art numerical modelling.

The thesis consists of eight chapters, which summarize the research presented in five

scientific articles. In the rest of this first chapter, a somewhat more in-depth intro-

duction is provided to the world of atmospheric aerosols and to the role of organic

compounds in these particles. In the first chapter, the aims of the thesis are also

defined. Chapter 2 presents the properties of organic compounds and particles that

were studied. Chapter 3 describes the numerical models and methods used. Chapters 4

through 6 summarize the key results obtained in the thesis. The topics of each scientific

article and my contribution in each of them are covered in chapter 7 and conclusions

are presented in chapter 8. The scientific articles are included at the end of the thesis.

1.1 Atmospheric aerosols and their impacts

Atmospheric particles have different shapes and sizes although in computational mod-

els and calculations, the particles are usually assumed to have a spherical shape and

consequently, diameter or radius is used as a characteristic length. Deviations from this

shape can be handled by introducing a shape correction factor (Seinfeld and Pandis,

2016).
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Figure 1.1: Particle number distribution (upper panel) and particle volume distribution

(lower panel) from SMEAR IV station Puijo, Kuopio, Finland. Measurement data are

from July 2nd, 2019 early in the morning. The figure also illustrates fitted multi modal

distribution (black line) and the three log-normal distributions that make up the sum

distribution (blue: nucleation mode, green: Aitken mode, red: accumulation mode)

Figure 1.1 shows an example of particle size distributions in both particle number and

volume bases, from SMEAR IV station Kuopio, Finland gathered on July 2nd, 2019.

Three distinct modes can be seen in the data. The first mode from the left is called the

nucleation mode. This mode consists of particles with diameters of a few nanometers.

The nucleation mode particles are formed from nucleation of sulfuric acid and bases

such as amines and ammonia (Kulmala et al., 2000, 2004; Almeida et al., 2013) as

well as oxidized organic compounds (Riccobono et al., 2014; Dunne et al., 2016). The

second mode illustrated in Fig. 1.1 is called the Aitken mode. The particles in the

Aitken mode originate from the growth of nucleation mode particles by organic and

inorganic vapors, but also from the emission of particles released in various combustion

processes e.g combustion of fuels (Seinfeld and Pandis, 2016). In both the nucleation

and the Aitken mode, the particles are effectively scavenged by coagulation1 into larger

particles (Seinfeld and Pandis, 2016).

1collisions between particles where one particle sticks to another

8



The third mode is called the accumulation mode; it consists of particles with diameters

from few tens of nanometers to a couple of micrometers. This mode is the most

prevalent in the lower panel of Fig 1.1 since the size distribution is predominated

by particles formed through coagulation and also from the growth of nucleation and

Aitken mode particles. The particle removal mechanisms e.g. wet and dry deposition

are also the least efficient in this region (Seinfeld and Pandis, 2016). One mode not

shown in Fig 1.1 is the coarse mode which consists of particles with sizes larger than

2.5 µm. These particles originate from anthropogenic activities and natural sources

like wind-blown dust or sea spray.

On a global scale, particles with a diameter smaller than 1 µm consist of both inorganic

and organic compounds (Zhang et al., 2007). The inorganic fraction consists mostly of

sulfate, nitrate and ammonium. The organic fraction contains a multitude of different

compounds which are discussed more in sections 1.2 and 2.1. In addition to organic

and inorganic compounds, atmospheric particles also contain water which is abundant

in the atmosphere.

Atmospheric particles exert various effects on the climate and health. The two main

quantities related to health effects of particles and air quality are PM10 and PM2.5.

PM10 refers to particulate matter whose size is smaller than 10 µm and PM2.5 partic-

ulate matter whose size is smaller than 2.5 µm. It has been estimated that even an

increase of 10 µgm−3 in PM2.5 was responsible for increasing the mortality by over 1%

on the following day in the USA (Franklin et al., 2007). However, the PM2.5 and PM10

measures might not be capable of capturing all of the particles’ health effects since

the fraction of deposited particles greatly increase when particle size is below 100 nm

(Löndahl et al., 2006)

Atmospheric aerosols impact both directly and indirectly on the climate. For example,

the particles can either scatter solar radiation directly which has a cooling effect or

absorb radiation which has a warming effect on the climate. These radiative effects

depend on the chemical composition and size of the particles (Stocker et al., 2013; Yu

et al., 2006).

The most poorly understood climate effect of atmospheric particles on the climate is

their role on cloud formation and the subsequent properties of the formed clouds. In

the Intergovernmental Panel for Climate Changes (IPCC) assessment report 5 (AR5)

(Stocker et al., 2013) it was estimated that the indirect effect was cooling on average,
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but our current knowledge is still far from complete about many important aerosol-

cloud-interaction processes.

Atmospheric particles act as an initial liquid or solid phase on which supersaturated

water vapor can condense, forming clouds (Seinfeld and Pandis, 2016). The amount of

these cloud condensation nuclei depends most strongly on the particle size distribution

with a secondary effect contributed by the composition of the particles (Dusek et al.,

2006).

1.2 Organic compounds in atmospheric aerosols

Atmospheric particles can be emitted into the atmosphere directly, but they are also

formed from the nucleation of sulfuric acid, bases and oxidized organic compounds

(Kulmala et al., 2000; Riccobono et al., 2014). These two pathways are called the

primary and secondary pathway, respectively. Particles formed from the secondary

pathway have initially a size of a few nanometers and they need to grow substantially in

order to have an effect on the climate. In many areas, the growth is due to condensation

of low- and semi-volatile organic vapors onto the surface of the particles. (Riipinen

et al., 2012, 2011; Kuang et al., 2010; Laaksonen et al., 2008; Kulmala et al., 2000).

The organic compounds can condense also onto primary particles. The organic fraction

of atmospheric particles contains thousands of different compounds (Goldstein and

Galbally, 2007). Measurements of atmospheric particle composition are made with

mass spectrometers. Instead of analyzing every compound individually, the compounds

in a mass spectrometer data can be grouped into factors based on their chemical

properties and sources and applying statistical dimension reduction techniques (SDRT)

(e.g Zhang et al., 2011; Ulbrich et al., 2009; Zhang et al., 2005).

Zhang et al. (2007) reported a series of particle composition measurements from the

Northern Hemisphere analyzed with a SDRT that allowed the organic fraction to be

split into a hydrocarbon-like organic aerosol (HOA) and several types of oxygenated or-

ganic aerosol (OOA) types. The HOA factor is related to anthropogenic actions such as

fossil fuel burning and primary emissions where particles enter the atmosphere directly

(primary organic aerosol, POA). The OOA factors are linked to organic compounds

produced from emissions and the subsequent oxidation of volatile organic compounds

(VOCs). Organic particles formed from this secondary pathway are called a secondary

10



organic aerosol (SOA). A significant fraction of the total amount of organics in the par-

ticles originates from the OOA factors (Tsigaridis et al., 2014; Hallquist et al., 2009;

Jimenez et al., 2009; Zhang et al., 2007).

The formation of SOA starts from the emission of VOCs which can be from both

anthropogenic and biogenic origins; of these, biogenic sources clearly dominate the

VOC budget (Goldstein and Galbally, 2007). These VOCs undergo rapid oxidation

reactions with ozone (O3) and hydroxyl radicals (OH) during the day and with ozone

and nitrate radicals (NO3) at night. The first oxidation reactions lead to organic

radicals, which undergo further reactions in the atmosphere and form semi-volatile

compounds (e.g. Glasius and Goldstein, 2016; Kroll and Seinfeld, 2008; Atkinson and

Arey, 2003, and references therein). The semi-volatile compounds can partition into the

available atmospheric particulate matter to form SOA or further oxidize either towards

CO2 or to compounds that have lower volatilities than the semi-volatile compounds.

These low-volatility compounds partition to the particle phase more effectively than

the semi-volatile compounds. The particle phase organic compounds undergo further

reactions that alter their composition and properties (Kroll and Seinfeld, 2008) creating

a complex mixture that exists in different phase states (Shiraiwa et al., 2017; Renbaum-

Wolff et al., 2013; Koop et al., 2011; Virtanen et al., 2010).

1.3 Aims of the thesis

If one wished to understand the interactions between aerosols, clouds and the climate,

a detailed knowledge about the properties of organic aerosols and especially SOA is

needed (Hallquist et al., 2009). The volatility and the phase state of SOA particles are

two of the most important properties (Glasius and Goldstein, 2016); another important

property is the particles’ hygroscopicity, i.e., their ability to take up water.

This thesis presents the recent development in characterizing these properties from

laboratory measurements using process modelling techniques. The aims of the thesis

are

1. To develop and test a process model optimization method for estimating the

volatility distribution of organic compounds in the OA particles as well as the

viscosity of the particles from isothermal OA evaporation experiments.

11



2. To compare how well the volatility distribution can be estimated from data on

the changes in particle size and from mass spectrometer data during isothermal

OA evaporation experiments.

3. To estimate the volatility distribution, viscosity and enthalpy of vaporization of

α-pinene derived SOA.

4. To test how accurately the hygroscopicity of dimethylamine-containing particles

is modelled even at very smallest particle sizes in a state-of-the art thermody-

namic equilibrium model.

12



2 On the studied properties

2.1 Partitioning of organic compounds – volatility

The tendency of an organic compound to evaporate from the particle (solid or liquid)

phase to the gas phase is called its volatility. The thermodynamic property related to

volatility is called the saturation vapor pressure (psat), which is defined as the vapor

pressure of a pure compound over a pure condensed (solid or liquid) phase at thermo-

dynamic equilibrium. The thermodynamic equilibrium is defined as the point where

the temperature and the pressure of every phase (gas – liquid or gas – solid for aerosols)

are equal and where there is no net flow of molecules to either phase. The condensed

phase will be assumed to be liquid from now on for simplicity.

The condensed phase of aerosol particles consists usually of a mixture of different com-

pounds with varying amounts and interactions between the molecules. For particles

with a diameter less than ca. 100 nm the curvature of the particles has also an effect on

the vapor pressure near the surface of the particle. Under these conditions, the equilib-

rium vapor pressure of compound i (peq,i) over the particle surface at thermodynamic

equilibrium can be calculated from psat,i as (e.g. Seinfeld and Pandis, 2016)

peq,i = xi γi Ke psat,i, (2.1)

where xi is the mole fraction of compound i in the condensed phase, γi is the mole-

fraction-based activity coefficient of i and Ke is called the Kelvin term. The activity

coefficient γi depends on the interactions between compound i with itself and with all

other compounds in the particle. Unless otherwise stated, in this thesis γ is assumed

to be unity and the particle phase is therefore assumed to behave ideally, i.e., the

interactions of a compound i with itself are assumed to be equal to the interactions of

i with other compounds. A non-ideal liquid particle phase is discussed in section 3.3

and studied in Paper V

The Kelvin term takes into account the curvature of the particle. The Kelvin term is

defined as (Seinfeld and Pandis, 2016)

Ke = exp

(
4σνm,i
RTdp

)
, (2.2)

13



where σ is the surface tension of the particle, νm,i is the molecular volume of compound

i, R is the universal gas constant and dp is the diameter of the particle. The terms inside

the exponential in Eq. (2.2) are always positive and the Kelvin term is thus always

larger than one. The curvature of the particle therefore increases the equilibrium vapor

pressure.

The temperature effect to peq,i can be taken into account by using the Clausius-

Clapeyron equation for the saturation vapor pressure (e.g. Bilde et al., 2015)

psat,i(T ) = psat,i(Tref ) exp

[
∆Hvap,i

R

(
1

Tref
− 1

T

)]
, (2.3)

where Tref is a reference temperature and ∆Hvap,i is the specific enthalpy of vaporiza-

tion, i.e., the heat required to evaporate one mole of compound i from the liquid phase

to the gas phase. In the derivation of Eq. (2.3) the enthalpy of vaporization is assumed

to be independent of the temperature.

Instead of vapor pressures, saturation and equilibrium mass concentrations (Csat and

Ceq) are more commonly used when dealing with atmospheric organic compounds. The

concentration and pressure are related by an equation of state. Usually the gas phase

is assumed to obey the ideal gas law, leading to C = pM
RT

, where M is the molar mass.

Csat and Ceq are usually expressed in units µgm−3 .

In theory, the volatility of organic compounds could be resolved by defining Csat for

every compound. In practice, this is not currently possible due to the vast number

of different organic compounds in the atmosphere that can partition into the particles

(Glasius and Goldstein, 2016; Goldstein and Galbally, 2007) and due to the significant

uncertainties that are related to saturation vapor pressure measurements of even simple

organic compounds, such as carboxylic acids (Bilde et al., 2015). Even if these chal-

lenges could be overcome, the results might be challenging to incorporate into global

climate models because representing thousands of different organic compounds would

require a huge amount of computational resources. Therefore, parametrizations have

to be used.

Perhaps the most widely used volatility parametrization is the volatility basis set (VBS)

proposed by Donahue et al. (2006). In a VBS, the organic compounds are grouped

based on their Csat or C∗. The C∗ is called the effective saturation mass concentration

and is defined as the product of the Csat and activity coefficient γ of a compound

14



(Seinfeld and Pandis, 2016). The different volatility groups in the VBS are separated

commonly by a single magnitude difference in Csat. For example compounds with

log (Csat) = [0.5; 1.5[ are grouped to bin log (Csat) = 1. An example of a VBS is

shown in Fig. 2.1 where forty different compounds with different Csat and particle

phase mole fractions are grouped into six volatility bins. In this example, all the

compounds with log (Csat) ≤ −3 are grouped to the volatility bin log (Csat) = −3 and

all the compounds with log (Csat) ≥ 2 to volatility bin log (Csat) = 2. The volatility

distributions presented in this thesis do not always group the compounds to bins with

a decadal difference in Csat between two adjacent bins as was done in the original work

of Donahue et al. (2006), and therefore the term volatility distribution (VD) is used.

The term VD compound is used to distinguish between organic and model compounds

(volatility bins).
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Figure 2.1: Example of forty organic compounds (circles) grouped to six volatility bins

(bars). Each new bin to the right increases the Csat by one order of magnitude. The

color of a circle indicates to which volatility group the organic compound is assigned.

The vertical axis shows the mole fraction in the particle phase. The data is from the

artificial data set 4 in Paper I.
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2.2 Amorphous phase of the particles – viscosity

Substances can be classified with the (dynamic) viscosity η into liquids (η ≤ 102 Pa

s), semi-solids (η ≈ 102 . . . 1012 Pa s) and solids (η ≥ 1012 Pa s) (Koop et al., 2011;

Shiraiwa et al., 2011). A higher viscosity refers to a slower movement of molecules

along possible concentration gradients in matter and can be thought to represent the

stiffness of the matter. The viscosity of commonplace substances can span more than

several orders of magnitude. For example, a glass can have a viscosity ηglass > 1012 Pa

s whereas water at room temperature has ηwater = 10−3 Pa s (Rumble et al., 2018).

Virtanen et al. (2010) were the first to report laboratory measurements of an amorphous

(semi-)solid state of SOA particles that had been hypothesized earlier by Zobrist et al.

(2008). The amorphous phase refers to a physical state of matter where the matter

does not exhibit a long-range order (Meille et al., 2011) i.e. unlike the situation in

crystals. Until the work of Virtanen et al. (2010) model representations of organic

aerosols assumed that the particle phase behaved like a liquid. After the report of

Virtanen et al. (2010), SOA related research has concentrated on the quantification of

the viscosity of SOA (e.g. Rovelli et al., 2019; DeRieux et al., 2018; Reid et al., 2018;

Song et al., 2016; Järvinen et al., 2016; Renbaum-Wolff et al., 2013; Abramson et al.,

2013). The viscosity of SOA particles is important because it determines whether

the particle dynamics are controlled solely by the volatility of individual compounds or

whether the movement of the compounds inside the particles also plays a role (Shiraiwa

et al., 2011). Examples of how viscosity affects the evaporation of organic compounds

from particles in laboratory experiments are seen in Papers I–IV

In the work presented in this thesis, the viscosity of the particles is assumed to have

the form

log η =
N∑
i=1

xi log bi, (2.4)

where bi is the contribution parameter of compound i to the viscosity of the particle

and the sum goes from 1 to the number of compounds N in the particle. In an ideal

case, the contribution parameter bi can be thought to represent the viscosity of the pure

substance similarly to what O’Meara et al. (2016) used for the self-diffusion coefficients

of viscous aerosol particles. In this thesis Eq. (2.4) was used to calculate the viscosity

16



of particles in Papers I–IV using VD compounds in place of real compounds.

2.3 Water uptake of particles – hygroscopicity

The interaction of water with inorganic and organic compounds is important because

water is the most abundant vapor in the atmosphere (Seinfeld and Pandis, 2016).

The tendency of aerosol particles to absorb moisture from the atmosphere is called

hygroscopicity. If ideal partitioning of water to particle phase were to be assumed, at

thermodynamic equilibrium the amount of water in the particle could be calculated

from solving xwater from Eq. (2.1) assuming γwater = 1

xw =
pi

psatKe

=
S

Ke
, (2.5)

where S is the saturation ratio (relative humidty (RH) divided by hundred) of water

and the subscript w refers to water. However, water molecules are polar meaning the

interaction of water with itself and with other compounds are not equal. The ideal

solution assumptions in Eq. (2.5) is therefore not adequate. Including γw into Eq.

(2.5) results in

γwxw =
S

Ke

aw =
S

Ke
, (2.6)

where aw is called the activity of water.

In practice, if there are multiple compounds in the studied system, γw depends on

the relative amounts of all of the compounds (e.g. Clegg et al., 2001). If one wishes

to calculate the amount of water in a particle at thermodynamic equilibrium, the

amounts of all the compounds and their activity coefficients need to be known. As the

number of compounds increases the calculation soon becomes too difficult to calculate

explicitly. For this reason, there exists multiple numerical models that calculate the
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composition of a system at thermodynamic equilibrium e.g. E-AIM (Wexler and Clegg,

2002) AIOMFAC (Zuend et al., 2008, 2010) and uManSysProp (Topping et al., 2016).

The first of the models is presented shortly in section 3.3 and its capability to evaluate

water uptake of dimethylamine containing particles was determined in Paper V.

3 Process modelling and model optimization

The principal work done in this thesis concentrates on modelling aerosol processes and

estimating the properties of organic aerosols from such modelling efforts. In Papers I

through IV, the evaporation of organic compounds from particles has been modelled

in both low and high particle phase water content cases. When the particle phase

water content is high, the viscosity of the particles is lower. In Paper V, the water

uptake of dimethylamine-containing organic-inorganic particles was modelled. In this

section all the process models used in this thesis and their mathematical background

are presented. Additionally, a global optimization algorithm is presented for identifying

a model input that produces the desired model output.

3.1 Evaporation from a liquid-like phase

If the particle surface is in thermodynamic equilibrium with the gas phase directly

above the surface, the evaporation (or condensation) of a compound i is driven by

the difference between the gas phase concentration far from the particle Ci and the

equilibrium vapor concentration Ceq,i. The mass flux (change in mass of compound i

in time) Im,i can be stated as (Seinfeld and Pandis, 2016; Lehtinen and Kulmala, 2003;

Vesala et al., 1997)

Im,i = 2π(dp + di)(Dg,p +Dg,i)βm,i(Ci − Ceq,i), (3.1)

where di is the diameter of molecule, Dg,p is the diffusion coefficient of the particle in

a gas, Dg,i is the gas phase diffusion coefficient of molecule i and βm,i is the mass flux

correction factor.

The distance that the gas molecules travel between two collisions is called the mean

free path of a gas. The derivation of Eq. (3.1) starts from assuming that the mean
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free path of the gas molecules is small when compared to the size of the particle. In

this case the gas phase is a continuum from the point-of-view of the particle. The βm,i

corrects the (continuum regime) mass flux such that Eq. (3.1) can be used also when

the particle size is smaller or comparable to the distance gas molecules travel between

collisions with each other. There are multiple derived correction factors (Seinfeld and

Pandis, 2016). In this thesis the Fuchs-Sutugin form of the mass flux correction factor

was used (Fuchs and Sutugin, 1971)

βm,i =
1 + Kni

1 +
(

4
3αm,i

+ 0.377
)

Kni + 4
3αm,i

Kn2
i

, (3.2)

where αm,i is the mass accommodation coefficient and Kni is the Knudsen number

of compound i. The mass accommodation coefficient describes the probability that

an organic compound will condense upon collision with the particle. In general, the

mass accommodation coefficient of organic compounds has been found to be near unity

(Julin et al., 2014) and consequently the mass accommodation coefficients are assigned

the value αm,i = 1 for all compounds in this thesis.

In Eq. (3.2) the Knudsen number Kni is the ratio between the mean free path of the

gas molecules λi and the particle size.

Kni =
2λi

dp + di
. (3.3)

The mean free path of a molecule in the gas phase when using Eq. (3.1) is calculated

as

λi =
(Dg,p +Dg,i)

(c̄p2 + c̄i2)1/2
, (3.4)

where c̄p and c̄i are the mean speeds of the particle and molecule i in the gas phase. If

the speeds of a molecule and particle are assumed to be distributed according to the

Maxwell-Boltzmann distribution, the mean speed can be calculated as the expected

value of this distribution resulting in

c̄ =

√
8kT

πm
, (3.5)
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where m is either the mass of a particle or of a molecule i.

In Papers I–IV, the evaporation of organic molecules from the liquid phase is calcu-

lated by solving simultaneously Eq. (3.1) for all the organic compounds and calculating

the total particle mass flux as

dmp

dt
=

N∑
i=1

Im,i, (3.6)

where mp is the mass of the particle and the sum goes from 1 to the number of organic

(or VD) compounds in the particle.

The MATLAB program that solves these equations numerically is called the liquid-

like evaporation model (LLEVAP). Figure 3.1 shows a schematic representation of the

modelled system in the LLEVAP model. Eq. (3.1) are solved only for the organic

compounds. When Eq. (3.1) are solved from a specified start time to an end time, the

particle phase water fraction is constantly updated to keep the gas–particle equilibrium

for water, assuming an ideal solution (Eq. 2.5).

As an output the LLEVAP model calculates the particle diameter dp relative to the

input starting diameter dp0 as a function of time by converting the particle mass from

Eq. (3.6) to particle diameter. The resulting quantity is called the evaporation factor

(EF (t) = dp(t)

dp,0
).

In Paper I, Eq. (3.1) is used to model evaporation in an experimental setup where

the gas phase is continuously flushed with a flow of nitrogen gas (N2). This has an

effect on Eq. (3.1) because the flow transfers molecules away from the near gas phase.

This can be done by multiplying the mass flux Im,i with the Sherwood number Sh (e.g.

Seinfeld and Pandis, 2016)

Sh = Sh0 + Sh1Re
1/2Sc1/3, (3.7)

where Re is the Reynolds number and Sc is the Schmidt number

Re =
ρg,N2vN2dp
ηg,N2

(3.8)
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Im,i
Ceq,i

Ci

Figure 3.1: Schematic representation of the modelled system in the LLEVAP model.

The mass fluxes Im,i are solved only for the organic compounds whereas the amount

of water in the particle is constantly updated to ensure that there is an equilibrium

between gas and liquid phase. The gas and particle phases are assumed to equilibrate

instantly in the dashed region such that the evaporation is controlled by the equilibrium

concentration Ceq,i on the surface of the particle and gas phase concentration Ci far

away from the particle given by Eq. (3.1).

Sc =
ηg,N2

ρg,N2DN2

, (3.9)

where ρg is the density and ηg is the viscosity in the gas phase. v is the speed of the

flow. In Paper I the constant terms Sh0 and Sh1 were set to Sh0 = 2.009 and Sh1 =

0.514 (Kulmala et al., 1995).
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3.2 Diffusion inside the particles

The diffusion of organic molecules in a condensed phase can be modelled with Fick’s

first law of diffusion which states that the flux of compound i per unit area is pro-

portional to the concentration gradient of the compound (e.g. Seinfeld and Pandis,

2016)

Ji = Dc,i∇Cc,i

= Dc,i
∂Cc,i
∂r

, (3.10)

where D is the diffusion coefficient of i and Cc,i is the number concentration of i in

the condensed phase. The last line of Eq. (3.10) follows when spherical symmetry is

assumed.

The diffusion coefficient can be calculated from the viscosity of the condensed phase

using the Stokes-Einstein equation and assuming spherical shape for the molecules

(Einstein, 1905)

Dc,i =
kBT

6πriη
, (3.11)

where kB is the Boltzmann constant and ri is the diameter of the molecule.

The Stokes-Einstein equation (3.11) is only valid for solutions where the collisions

between molecules can be said to be random (i.e., in an ideal solution), where the

viscosity is below that of a glass (1012 Pa s) and where the size of other molecules are

much smaller than that of molecule i (e.g. Price et al., 2015; Miller, 1924).

While the first and second restrictions might be fulfilled for organic compounds in

the particle phase, the third restriction most surely is not, as the organic molecules

have comparable sizes. Furthermore, the Stokes-Einstein equation is also used in this

thesis to calculate the diffusion coefficient of water, which is a much smaller molecule

than the other organic molecules in the particle. The water diffusion coefficients in

secondary organic material calculated with the Stokes-Einstein equation are many or-

ders of magnitude smaller than the measured ones (Price et al., 2015). Whether the
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Stokes-Einstein equation holds or not for the OA studied in this thesis has an effect to

the reported viscosity values, but not on the calculation of diffusion inside the particle,

which are performed using the diffusion coefficient Dc,i.

To model the particle evaporation in conditions, where the viscosity of particles is

suspected to affect the particle dynamics, the kinetic multi-layer model of gas–particle

interactions in aerosols and clouds (KM-GAP) developed by Shiraiwa et al. (2012)

was used. In KM-GAP, the particle is divided into L co-centric layers and the flux of

molecules i in layer l is calculated with Eq. (3.10) (Shiraiwa et al., 2012)

dNi,l

dt
= JiAl + JiAl−1

= (Ji,l,d − Ji,l,u)Al + (Ji,l+1,u − Ji,l+1,d)Al+1

= Dc,i,l
∆Cc,i,l,l−1

∆rl,l−1

Al +Dc,i,l+1
∆Cc,i,l,l+1

∆rl,l+1

Al+1

=
2Dc,i,l

δ(l) + δ(l − 1)
(Cc,i,l−1 − Cc,i,l)Al +

2Dc,i,l+1

δ(l) + δ(l + 1)
(Cc,i,l − Cc,i,l+1)Al+1,

(3.12)

where Al is the surface area of layer l and rl is the length from the center of the particle

to the layer l. Subscript l − 1 refers to the layer above layer l and l + 1 to the layer

below l. The second line in Eq. (3.12) divides the molecular fluxes into fluxes that

go through layer l (the first term) and those that go through the layer below l. The

average distance that the molecules i travel when they move between two layers on the

fourth row is expressed as

∆rl,l+1 =
δ(l) + δ(l + 1)

2
, (3.13)

where δ(l) = rl−rl−1. A schematic representation of the molecular fluxes in the particle

bulk is shown in Fig. 3.2.

When modelling the evaporation in Paper III the viscosity of the particles was cal-

culated according to Eq. (2.4). In Papers I–II and IV the viscosity was calculated

for each layer separately

23



Ji,SS,u Ji,SS,d

Ji,b1,u

Ji,b2,dJi,b2,u

Ji,b1,d

Ji,bn,u Ji,bn,u

Figure 3.2: Representation of the modelled molecular diffusion in the KM-GAP model.

In each bulk layer (b) and quasi-static surface layer (SS) the molecular flux of com-

pound i to and from the layer is calculated according to Eq. (3.12). Different colors

demonstrate that the composition differs between layers but only in the radial direction.

log(ηl) =
N∑
i=1

xi,l log(bi), (3.14)

where xi,l is the mole fraction of i in layer l.

The first particle phase surface layer in KM-GAP is called the quasi-static surface (SS)

layer. The SS-layer shrinks when evaporation is modelled as the compounds diffuse

into the gas phase. To prevent negative concentrations, the SS-layer was combined

with the first bulk layer if the size of the layer decreased below 0.3 nm in Papers
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I–IV. The combination of layers during evaporation can result in unrealistic fluxes to

the gas phase if the viscosity in the SS-layer is high and it is combined with a layer that

has a considerably lower viscosity and contains high volatility compounds. To prevent

such results the number of layers needs to be large enough. In general the number of

layers in this thesis are between 30 and 60 and the final results were always checked

by running the KM-GAP model with more than 100 layers.

3.3 Hygroscopicity of real solutions

In Paper V, the Extended Aerosol Inorganics Model’s (E-AIM) (Wexler and Clegg,

2002; Clegg et al., 1998) capability to predict the hygroscopicity of dimethylamine,

sulfate and ammonium containing nanoparticles at various RH levels and particle sizes

was tested. E-AIM solves the equilibrium water content from the Gibbs free energy G

of a system defined as (Wexler and Clegg, 2002)

G = nc,wRT (ln aw − lnRH)

+
∑
i

ni(∆fG
0
i +RT ln ai)

+ng,w(∆fG
0
w +RT ln pw), (3.15)

where nc,w is the moles of water in the condensed phase, and ng,w is the number of

moles of water in the gas phase. ∆fG
0
i is the Gibbs free energy or formation, i.e., the

change in Gibbs free energy when one mole of compound i is formed. The sum in the

second line in Eq. (3.15) goes from one to the number of species in the condensed

phase excluding water.

To find the amount of water in the condensed phase when only the RH and the amount

of all other compounds are known, the minimum of the Gibbs free energy needs to be

calculated. This can be done by solving the partial derivative of (3.15) with respect

to nc,w. In the E-AIM setup used in Paper V, the activity coefficients of ionic com-

pounds were calculated based on the work of Clegg et al. (1992, 1998). For organic

compounds, the activity coefficients were calculated using the UNIFAC model (Hansen

et al., 1991; Fredenslund et al., 1975). For aqueous inorganic–organic mixtures, the

activity coefficient of water in E-AIM was calculated as a sum of logarithms from water
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interactions with itself, with inorganic compounds and with organic compounds (Clegg

et al., 2001).

The E-AIM output represents the equilibrium amount of moles of water in the con-

densed phase. The growth factor GF of particles due to uptake of water was used to

relate the moles of water to a measurable quantity.

GF (RH) =
dp,RH
dp,dry

=

(
mp,RHρp,dry
mp,dryρp,RH

) 1
3

, (3.16)

where ρ is the condensed phase density and subscripts RH and dry refer to quantities

at a distinct RH and in a dry condition, respectively. The condensed phase densities are

needed to calculate the GF . In real solutions, the volume and the density of a mixture

can not be calculated as a sum of the volumes of individual compounds. Because

of the interactions between the compounds, the volume of a mixture will differ from

the summed volumes. The E-AIM calculates the density of a real solution by taking

into account these interactions (Clegg and Wexler, 2011). Finally, to calculate the

equilibrium saturation ratio over curved surface using (2.6) one needs to determine the

surface tension σ of the condensed phase. The surface tension model used in E-AIM is

presented in Dutcher et al. (2010).

3.4 Global optimization

The process models described in this section provide an answer to the question ”Given

an input what is the evolution of the (modelled) system?”. To estimate physicochemical

properties, the question that is often asked is ”Given the evolution of the system, what

was the initial stage (input)?” because the evolution of the system is usually measured.

Process models that describe the processes happening during the measurements can

be used in finding the initial stage of the system.

The mathematical problem of finding the correct input that produces the wanted evo-

lution can be stated as finding an input x that minimizes a function f(x)
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arg min
x

f(x). (3.17)

f(x) is called the cost function which is a function that returns smaller values when the

input x produces a model output that better resembles the measurements. For example,

given the measurement results Ymeasured and a process model output Ymodel(x), a cost

function could be their mean squared deviation

f(x) =
1

N

N∑
i

(Ymeasuserd,i − Ymodel,i(x))2 , (3.18)

where the sum goes from one to the number of measurement results.

To find an input xi such that there does not exists xj for which f(xj) < f(xi), the

partial derivatives of f with respect to input x need to be calculated. In this case, f(xi)

is the global minimum of f and xi is the answer to the optimization problem presented

in (3.17). The derivatives can be calculated in simple cases by hand. With more

difficult cases, a numerical approximation can be used. When Ymodel is calculated using

a process model, it might be challenging to evaluate exactly the partial derivatives,

and on the other hand, the numerical approximation of the derivatives might not be

accurate enough to guarantee convergence.

When it is challenging to evualte the partial derivatives of the cost function, it might

be sufficient to search for a solution for x that results in a small value of the cost

function even though it is not possible to be certain that the found solution is a global

minimum. These sufficient solutions can be calculated using metaheuristic, derivative-

free algorithms.

There exists various metaheuristic algorithms which are intended to find a sufficiently

good and efficient solution to this kind of optimization problem (3.17). Many of these

algorithms have been inspired by natural processes. For example, the particle swarm

optimization algorithm (Eberhart and Kennedy, 1995) is inspired by the behavior of

bird flocks and fish schools and the cuckoo search (Yang and Deb, 2009) mimics the

nesting behavior of certain species of cuckoos. The genetic algorithm used in this work

(e.g. Goldberg, 1989) resembles natural evolution.
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3.4.1 Monte Carlo genetic algorithm (MCGA)

The Monte Carlo genetic algorithm (MCGA) (Berkemeier et al., 2017, Paper I) is a

metaheuristic optimization algorithm. MCGA is a hybrid algorithm, i.e., the algorithm

combines two different optimization algorithms, a random search of the parameter space

(Monte Carlo or MC part) followed by a genetic algorithm (GA part) which utilizes

the solutions found in the MC part as the input. Figure 3.3 shows the flowchart of the

algorithm used in this work. The implementation of the algorithm in Papers I, II

and IV is described below. In Paper III, a version of the genetic algorithm was used

and its differences to the GA part are also described.

In the MC part, a predetermined number Npop,MC of candidate solutions x to the

optimization problem are drawn randomly. From these candidates, Npop,GA ≤ Npop,MC

solutions are chosen. First, Nelite candidates are chosen that result in the smallest values

of the cost function f and then the rest of the candidates are chosen randomly. The

chosen candidates form the first iteration of the genetic algorithm, called a generation.

The group of candidates in the current generation is also referred to as the population.

The genetic algorithm calculates new generations, which results in a slow homoge-

nization of the cost function values of the candidates. The Nelite candidates from the

previous generation are automatically moved to the next generation. New candidates

are calculated to fill the population in the next generation. A new candidate is cal-

culated by first picking two candidates, performing a crossover to these candidates,

implementing a mutation and then calculating whether the new candidate is accepted

or rejected.

The two candidates are picked based on the cost function values of the population.

The candidates are selected such that the probability to be chosen is

P(choose candidate n) ∝ f(xn)−1, (3.19)

where xn is nth candidate’s input to the process models. The right hand side of Eq.

(3.19) can also be called the fitness F of the candidate, i.e., a higher fitness value

corresponds to a smaller value of the cost function. In Fig. 3.3, the stopping criteria

are expressed using the fitness value rather than the cost function. In Paper III, this

probability was set to be the negative exponential of the cost function divided by a

scaling parameter.
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Figure 3.3: Flowchart of the MCGA optimization algorithm used in Papers I, II

and IV. Npop marks the number of candidates in either the MC or GA parts, Ngen

the number of generations, Nelite is the number of highest fitness candidates that are

always accepted to the new generation, F is the fitness of a candidate(s) (see text for

definition). Fnew refers to the fitness of a newly created candidate and Fprev. gen refers

to all the fitness values in the previous generation. u marks a uniform random number

in the range ]0, 1[
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The crossover is calculated by traversing a list of input variables from x that are

marked as free or optimizable parameters2. For every free parameter, the MCGA

algorithm picks either of the parent’s parameter with equal probability. In Paper III,

the crossover is calculated differently, taking into account both of the parent candidates’

free parameter values (see the supplement of Paper III).

Once the candidate is created, it can undergo a mutation with a preset probability

Pmutation. If the mutation happens, the free parameters are drawn again from their

preset intervals.

Finally, the candidate is accepted to the new generation if its fitness is higher than

the lowest fitness in the previous generation. If this is not the case, the candidate

is accepted with a probability proportional to Fnew

min(Fprevious generation)
, where Fnew is the

fitness of the newly created candidate. If either of these conditions are not fulfilled,

one of the parents is accepted to the next generation with a probability proportional

to their fitness.

Figure 3.4 shows an example of how the cost function values of the population evolve

during 10 generations of running the MCGA algorithm. The figure shows that the cost

function values are distributed initially such that there are few good candidates and

many more poor ones. As more generations are calculated the population homogenizes

to candidates that have low cost function values.

In this thesis the MCGA algorithm was used to infer the volatility distributions at

the start of the evaporation, enthalpies of vaporization and/or contribution parameter

bi values in Eq. (2.4). In a typical setup, the free parameters in the optimization

were dry particle mole fraction of each VD compound at the start of the evaporation,

the enthalpy of vaporization of each VD compound and the contribution parameter bi

values of each VD compound. The MCGA algorithm was set to search for those values

of the free parameters that produce the measured evapograms when used as an input

to either the LLEVAP or the KM-GAP model. The goodness-of-fit in all cases was

calculated using Eq. (3.18).

2These variables are also called design variables
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Figure 3.4: An example how the cost function values in a population evolve between

generations. The horizontal axis shows the logarithm of the cost function (Eq. 3.18

and the vertical axis shows the number of candidates. Data is from Paper I where

the MCGA algorithm was used to estimate volatility distribution of an artificial SOA

particle
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4 Methods to quantify volatility and viscosity from

isothermal particle evaporation data

4.1 Isothermal evaporation measurements

There are several studies that have examined the kinetics and phase state of SOA by

measuring the isothermal evaporation of the SOA particles (e.g., Grieshop et al., 2007;

Vaden et al., 2011; Wilson et al., 2015; Liu et al., 2016; D’Ambro et al., 2018; Buchholz

et al., 2019a, and Papers I–IV). The general experimental setup for isothermal

evaporation studies in this thesis was

1. SOA formation

2. Evaporation condition selection

3. Sample selection

4. Gas phase dilution

5. Particle size measurement

In Paper II, the SOA was formed using the Potential Aerosol Mass (PAM) chamber

(Kang et al., 2007; Lambe et al., 2011) and in Papers III–IV, a continuous flow

tube reactor was used. The SOA generation requires a precursor VOC(s) (α-pinene in

Papers II–IV) and oxidizing compound(s) (O3 and/or OH in Papers II-IV). In all

formation types, the VOCs are allowed to react with the oxidizing compounds to form

an SOA. The oxidation conditions and the amount of VOCs have an influence to the

resulting SOA.

In Papers II-IV, the SOA particles with diameter of 80 nm were selected with a

differential mobility analyzer (TSI Inc., Model 3085) and led to a stainless steel reaction

time chamber (RTC) where their evaporation was studied with a scanning mobility

particle sizer (SMPS; TSI Inc., Model 3082+3775). When particles of a certain size

were selected, the gaseous organic compounds were removed from the gas phase, which

initiated the particle evaporation. The size distribution measurements in the RTC

were started after its filling, which takes about 20 minutes. In order to obtain short

residence time data, the selected monodisperse particles were led through a bypass
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to the SMPS with tubing of varying sizes. The measurements result in particle size

change versus time data which in this thesis is referred to as an evapogram.

An important aspect to keep in mind is that the conditions during the SOA formation

(e.g. temperature and RH) were always similar in individual studies (Papers I–IV).

When the SOA is formed under the same conditions, it has the same properties at the

start of the evaporation even though the evaporation conditions might be different. For

example, the volatility distributions are similar at the start of the evaporation even

though the evaporation could be measured at two different RH levels.

Paper I tests the global optimization algorithm presented in Sect. 3.4.1 for estimating

the VD and the viscosity. The aim was to test how well the algorithm, coupled with

the presented process models, can estimate the properties of organic aerosol particles

from isothermal particle evaporation experiments. In Paper I, the isothermal evap-

oration measurements were done with an electrodynamic balance (EDB) which traps

an atomized droplet in an electric field and the size change is inferred by illuminating

the droplet with a laser and measuring the elastically scattered light (Glantschnig and

Chen, 1981; Davies et al., 2013; Rovelli et al., 2016; Marsh et al., 2017).

4.2 Volatility distribution estimated from isothermal evapo-

ration data

The isothermal evaporation experimental setup in Papers II–IV constrain the volatil-

ity distribution (VD) compounds that can be estimated. First, the total gas phase

concentration of organic compounds during SOA formation can not be higher than

the total gas phase concentration near to the surface of the particles. This limits the

maximum possible Csat that can be estimated from the data, because the inequality

N∑
i=1

xi Ke Csat,i ≤ Cg,organics, (4.1)

must hold. The gas phase concentration of organic compounds (Cg,organics) can be

calculated from the amount of reacted VOC precursor and the particle phase mass

concentration that are both measured in Papers II–IV.
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Second, the experimental time scale and particle size have an effect on the inferable

VD. Any Csat that is high enough to evaporate before the first measurement is not

identifiable from the data and any Csat that is low enough not to evaporate at all or

only slightly during the experiment will be classified to the least volatile identifiable

VD compound.

In Papers I–II and IV, the minimum and maximum Csat that can be estimated from

the measurements were determined by running the LLEVAP model with a particle that

consists of one compound. The minimum identifiable Csat was determined to be the

value that showed at least 1% size change in the time scale of the experiments and the

maximum to be the value that showed no more than a 90% size change before the first

measurement point.

Figure 4.1 shows two examples from Paper I. Figure 4.1a shows MCGA estimates

from optimizing the LLEVAP model output to match a synthetic data set. This data

set is the same as shown in Fig. 2.1 and consists of 40 organic compounds, which differ

only in their Csat. These 40 compounds are grouped into six VD compounds whose

mole fractions were optimized with the MCGA algorithm. The MCGA estimates are

close to the correct values except for the two least volatile VD compounds. Both of

these compounds evaporate more than 1% with respect to the experimental timescale,

but at a such slow rate, there are many combinations of the two compounds that can

produce the correct evapogram. The summed mole fraction of the two least volatile

compounds is nearly constant between 500 independent estimates shown in Paper I.

Figure 4.1b shows the estimated VD of particles atomized from an aqueous mixture

of sucrose (lower C∗) and glycerol (higher C∗). The evaporation of this mixture was

measured with the EDB under two different RH condition. The LLEVAP and KM-GAP

models were used to model the evaporation at high and low RH values, respectively.

The estimated VD shows that the mole fraction of both compounds is captured well, but

there is a slight deviation from the literature values when the volatilities are compared.

In Paper I, the difference in C∗ estimate of glycerol was speculated to originate from

the assumption that the particle phase behaves ideally in model simulations. AIOM-

FAC (Zuend et al., 2008, 2010) simulations using the initial particle composition re-

vealed that the activity coefficient for water might be lower than unity, which means

that amount of water to be underestimated in the LLEVAP and KM-GAP simulations

where a water activity coefficient of one is assumed. In the optimization, this causes
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Figure 4.1: MCGA derived estimates for the volatility distribution of organic com-

pounds in the particle phase at the start of the evaporation. The vertical axis shows

the mole fraction in the particle excluding water and horizontal axis shows the effective

saturation mass concentration C∗. a) artificial data set 4 in Paper I b) mixture 3 in

Paper I.

the algorithm to underestimate the C∗ of glycerol to obtain the correct evapogram.

4.3 Particle viscosity

The viscosity of SOA particles was also estimated in Papers I–IV. The experimental

evapograms showed a consistently slower rate of evaporation in RH≤20% conditions

than in the high RH conditions, which is contrary to Eq. (3.1). At lower RH values

the mole fraction of evaporating organics is higher and the evaporation rate should

also be higher3. These results are in line with other evaporation studies at low RH

(Vaden et al., 2011; Wilson et al., 2015) In Papers I–IV, these experimental results are

interpreted such that the lower rate of evaporation at lower RH is due to mass transfer

limitations in the particle phase, i.e., the particle phase viscosity is high enough to limit

the diffusion of organics from the particle core to the surface where they evaporate into

the gas phase.

3This result is also called the solution effect or Raoult’s law
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Figure 4.2: Threshold viscosity calculated in Paper IV. The threshold is determined

to be that particle viscosity, where the LLEVAP and KM-GAP simulated evapograms

differ by more than 1%. In the simulations the particle consisted of a non-volatile

fraction and a volatile fraction whose C∗ is shown in the horizontal axis. The initial

particle size in these simulations was 80 nm. The top panel shows the volatility grouping

typically used to describe the volatility of organic compounds (ELVOC: extremely low,

LVOC: low-, SVOC: semi-, IVOC: intermediate volatile organic compound).

Figure 4.2 displays simulation results from Paper IV where the threshold viscosity for

the studied evaporation process was calculated. The threshold viscosity was defined

to be the particle phase viscosity, which limits the diffusion of organics to the surface

such that the evaporation is not solely controlled by the VD of the organic compounds.

This threshold value was calculated by simulating the evaporation of a particle that

consists of non-volatile and volatile VD compounds. The horizontal axis in Fig. 4.2

shows the C∗ of the volatile VD compound. The threshold viscosity was set to be the

value where the KM-GAP simulated evaporation factors differed by more than 1% on

average from the LLEVAP simulated evaporation factors.
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Figure 4.2 shows that there exists a linear relationship with the log(C∗) of the evap-

orating VD compound and the threshold viscosity in the evaporation process. The

particle size has an effect on the threshold viscosity. When the particle size is large,

the threshold viscosity is lower than when the particle size is smaller.

Figure 4.2 shows also the minimum particle viscosity that is quantifiable from evapo-

ration measurements in Papers II–IV since viscosities below the threshold limit are

not sensitive to the evaporation process. In these low-viscosity fluids, the evaporation

process is controlled solely by the volatility distribution. Similarly, when viscosity be-

comes high enough, virtually none of the organic compounds will evaporate during the

experimental time scale. The viscosity thresholds depend on the particle size and VD

of the organics in a complex way. For 80 nm particles and with typical VD obtained

in this work, the quantifiable particle viscosity is around η = 105–1010 Pa s.

The mixing rule type of viscosity dependence on the mole fraction of the organic

compounds (Eq. 2.4) in an ideal solution case makes it possible to quantify a pure

compound’s viscosity4 η0. In that case, the contribution parameter bi is thought to be

equal to η0. The ability to infer η0 from evaporation measurements with the process

model optimization method was tested in Paper I with two simple mixtures consisting

of water, sucrose and glycerol whose pure compound viscosities were known. Figure

4.3 shows that the estimated η0 are far away from the literature values and that the

estimated values are coupled to each other. The possible non-ideality of the studied

solution could explain some of the discrepancy. The coupling of the free parameters

presents clear challenges for estimating the viscosities of pure compounds from evapo-

ration measurements with Eq. (2.4). There are too many options for the bi values that

produce the measured evapogram when used as an input to the KM-GAP model.

The fact that two pure compounds i.e. sucrose and glycerol, were not estimated cor-

rectly in Paper I does not mean that the overall particle viscosity could not be es-

timated correctly. The coupling of the bi parameters as well as possible non-ideal

behavior that affect the viscosity causes the bi parameters to deviate from their liter-

ature values similar to that seen with the volatility of glycerol in Fig. 4.1b. On the

other hand, the total particle viscosity is the quantity that is actually optimized when

the optimization is performed against particle size change data. The total particle

viscosity is correct if the system modelled with the KM-GAP model takes into account

all the factors that affect the evaporation.

4viscosity of a solution that consists only of one compound
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Figure 4.3: Pure compound viscosity for glycerol and sucrose estimated by optimizing

process models to two different experimental data sets which differed in their particle

water content during evaporation.

4.4 Volatility distribution estimated from mass spectrometer

data

Paper II compares the volatility distributions estimated from particle size change

measurements (see Sect. 4.2) and mass spectrometer measurements of the particles.

The Filter Inlet for Gases and AEROsols (FIGAERO) (Lopez-Hilfiker et al., 2014)

and Chemical Ionization Mass Spectrometer (CIMS) (Lee et al., 2014) were utilized to

measure the particle phase composition during isothermal evaporation. The working

principle of the FIGAERO inlet is that a particle sample is collected on a Teflon coated

filter and heated with a flow of nitrogen gas. The applied heat volatilizes the organic

compounds in the sample, which can be then detected in the CIMS.

The FIGAERO-CIMS measurement results in a matrix which shows how many counts

the CIMS detected at a certain sample temperature and mass-to-charge ratio. In Pa-

per II, this measurement matrix was analyzed using the positive matrix factorization

(PMF) (Buchholz et al., 2019b; Paatero and Tapper, 1994) method to yield a volatility

distribution. In order to distinguish between these two volatility distributions, the one

inferred from evapograms is referred to as VDevap and the one from PMF is referred to
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as VDPMF.

PMF splits the measurement matrix X into three parts: mass loading profiles G, mass

spectra F and residual matrix E such that

X = GF + E, (4.2)

if the dimension of X is m × n then G is m × p matrix and F is p × n matrix where

p is the number of PMF factors. The number of factors in the PMF analysis is a user

defined parameter. An example of the mass loading profile G is shown in Fig. 4.4. In

Paper II, the individual factors were interpreted to be VD compounds whose C∗ can

be calculated from the desorption temperature and the relative amount in the particle

from the relative signal area in matrix G

Figure 4.4: An example of the mass loading profile G in Paper II. The data is from

a sample collected from medium O:C high RH evaporation measurement at the start

of the evaporation.

Figure 4.5 shows the measured and simulated evapograms calculated using both volatil-

ity distributions as input to the LLEVAP model. In Fig. 4.5a the C∗ in the VDPMF

are calculated using the maximum desorption temperature (black crosses in Fig. 4.4)

and in Fig. 4.5b the C∗ of VDPMF,opt are calculated using the 25th and 75th percentiles
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of each factors desorption temperature range (diamonds in Fig. 4.4). When these per-

centiles are converted to C∗, they form a range of possible values that the volatility of

a factor can have. In Fig. 4.5b, the C∗ of each factor was optimized with the MCGA

algorithm to match the measured evapogram. The method shown in Fig. 4.5a does

not produce a similar evapogram that which is measured while the method shown in

Fig. 4.5b produces evapograms that match well with the measurements.
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Figure 4.5: Measured and simulated evapograms of medium O:C high RH experiments

in Paper II. The simulated evapograms are calculated using either VDevap or VDPMF

as input. a) VDPMF, C∗ are calculated using the maximum desorption temperature.

There are three lines for both fresh and dry sample, which correspond to minimum,

mean and maximum evaporation times seen also in subfigure b. b) VDPMF,opt, C∗

are calculated using 25th–75th percentiles of the factors desorption temperature range.

The minimum, mean and maximum evaporation time refer to times that the FIGAERO

sample could have evaporated during sample collection.

The results of Paper II show that the two studied volatility distributions are compa-

rable when each PMF factor’s C∗ is calculated from a range of desorption temperatures

rather than from the maximum desorption temperature. Deriving the VD from mass

spectrometer measurements would be an intriguing possibility for future parameter

estimation studies from isothermal evaporation experiments as the mass spectrometer

data constrains the parameter space beter than using only the particle size change

measurements.
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5 Volatility and viscosity of α-pinene SOA at dif-

ferent experimental conditions

Papers III–IV apply the process model optimization method described and tested

in Paper I to analyze the properties of α-pinene SOA at various evaporation con-

ditions. α-pinene is a cyclic monoterpene that is emitted from vegetation. Globally

monoterpenes such as α-pinene comprise 16% of the total biogenic volatile organic com-

pound annual yield and is one of the most important BVOCs in boreal forest regions

(Guenther et al., 2012; Bäck et al., 2012).

The isothermal SOA evaporation measurements Paper III were performed at three

different RH conditions (80%, 40% and ∼0%). The SOA was formed under dry condi-

tions at room temperature with the exception of the first dry experiment where the RH

was 30%. The SOA in Paper III was formed from ozonolysis of α-pinene. In Paper

IV, the isothermal evaporation was measured at two different temperatures (10◦C and

20◦C) and at 4–5 different RH level. For the SOA produced from photo-oxidation of

α-pinene, measurements were done at RH of 80%, 40%, 20% and ∼0% and for the

SOA produced from ozonolysis of α-pinene the measurements were made at 80%, 40%,

30%, 20% and ∼0% RH. In Paper IV, the SOA was formed in RH between 33–36%

and at room temperature.

As described in Sect. 4.1 the experimental evapograms show a suppressed evaporation

rate for evaporation at dry conditions, contrary to what would be expected for liquid-

like particles. In Papers III–IV, the process model optimization was done in two

stages. First the evapogram(s) at highest RH (around RH≈ 80%) was taken and the

dry particle mole fraction of each VD compound at the start of the evaporation was

optimized to yield simulated evapogram matching to the measurements. Additionally,

in Paper IV also the enthalpies of vaporization ∆Hvap,i of each VD compound were

also optimized because the highest RH measurements were performed at two differ-

ent temperatures. A linear relationship between ∆Hvap,i and log(C∗) was assumed,

similarly to Epstein et al. (2009)

∆Hvap,i = k log (C∗
i ) + y, (5.1)

and the slope k and intercept y were optimized. The LLEVAP model was used for these
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simulations at high RH. The evaporation below the highest RH was simulated with the

KM-GAP model. The best-fit VD (and ∆Hvap in Paper IV) was taken from the high

RH optimization and only the viscosity contribution parameters bi were optimized to

yield simulated evapograms that match the measurements.

Figure 5.1: a) All the measured evapograms in Paper III and simulated evapograms

for RH=80% experiments (red and gray lines). The light red area shows the evapogram

simulated with the VD reported by Pathak et al. (2007). b) the particle phase VD at

the start of the evaporation for the best fit VD (red bars) and the variation in mass

fraction of each VD compound between 20 calculated VD estimates (whiskers) c–e) the

time evolution of the best fit VD.

Figure 5.1a shows the measured and simulated evapograms for the evaporation mea-
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sured at high RH in Paper III. The figure also shows the evapograms calculated using

VD from Pathak et al. (2007) which was derived from growth measurements of SOA

generated from the ozonolysis of α-pinene. The VD values derived by Pathak et al.

(2007) are indicative of a clearly much faster rate of evaporation than that needed to

explain the measured evapograms.

Figure 5.1b shows the initial VD that is needed for the LLEVAP model to reproduce the

measurements and Fig. 5.1c–e show how the best fit VD evolves during the evaporation.

Initially, around 40% of organic molecules are in the two least volatile VD compounds.

This amount compares well to the VD estimated in Paper IV (Fig. 5.2a–b). The

results are also comparable to the results of Wilson et al. (2015) which indicated that a

significant fraction of non-volatile material would be needed to explain their isothermal

evaporation measurements at high RH and also with recent findings of extremely low-

volatility compounds in the gas phase (Ehn et al., 2014; Jokinen et al., 2015).

Paper IV reports the ∆Hvap for two different SOA systems. The derived vaporization

enthalpies are shown in Fig. 5.2c–d. For the α-pinene + O3 system the estimated ∆Hvap

values are in a range ca. 50–130 kJ mol−1 and for the α-pinene + OH system from 1–

150 kJ mol−1 which are in the same range as reported in other studies for α-pinene SOA

(Saha and Grieshop, 2016; Epstein et al., 2009; Sheehan and Bowman, 2001; Bilde and

Pandis, 2001) except for the very lowest values of α-pinene + OH system. However, the

slope and the intercept obtained by Saha and Grieshop (2016) and Epstein et al. (2009)

are not the same as the results of Paper IV. The reasons for these slight deviations

are unknown. However, the ∆Hvap values in Paper IV are estimated only from two

evaporation experiments. With more evaporation measurements at multiple different

temperatures, the ∆Hvap could be characterized more accurately.

The evaporation of the α-pinene SOA at RH below or equal to 40% was studied in

Papers III–IV. A representative set of results is shown in Fig. 5.3 (see also Fig. 2

in Paper III). In order to model the evaporation at 20%–40% RH throughout the

experimental time scale, particle phase mass transfer limitations needed to be taken

into account. Initially the evaporation of organic compounds is controlled by the VD

(the solid and dashed lines overlap in Fig. 5.3) but once the compounds with the

highest volatilities formed in the flow tube have evaporated, the evaporation becomes

mass transfer limited.

These results of Papers III–IV differ from those of Wilson et al. (2015) who concluded
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Figure 5.2: Estimated VD (a–b) and enthalpy of vaporization (c–d) from optimizing

the LLEVAP model to produce similar evapograms as those measured at RH=80% for

the evaporation of the two different α-pinene SOA systems studied in Paper IV. The

bars in subfigures a–b and circles in c–d show the best-fit parameters. The parameter

density shows the relative amount of estimates at a certain ∆Hvap value.

that the evaporation at RH=50% was similar to evaporation under dry conditions. In

Paper III, it was speculated, that deviations in the mass loading when the SOA

is formed could explain some of the discrepancy between these results. The SOA

mass loading was high (in the order of 1000 µgm−3 in both Papers III–IV) which
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Figure 5.3: Measured and modelled evapograms for α-pinene ozonolysis (a–b) and α-

pinene + OH (e–f) systems at different RH conditions. The solid lines are calculated

by optimizing the particle phase viscosity such that the KM-GAP output matches the

measurements. The dashed lines are calculated by taking the VD derived at RH=80%

and changing only the simulation RH to the correct value.

allowed partitioning of high volatility compounds into the particle phase. These high

volatility compounds can lower the viscosity of the particles during the early stages of

the evaporation.

Based on the results obtained in Papers III–IV it can be said that the viscosity starts

to hinder the evaporation of the α-pinene SOA particles studied in this thesis at around

η = 104–105 Pa s. A strong composition dependency on the viscosity is needed as the

viscosity in the simulations was between η = 107–108 at the end of the evaporation.
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6 Hygroscopicity of dimethylamine containing par-

ticles

Dimethylamine (DMA) is an important organic compound that is emitted into the at-

mosphere from both anthropogenic and biogenic sources (Ge et al., 2011; VandenBoer

et al., 2011; Youn et al., 2015). The particle phase amount of DMA is higher during

the new particle formation events5 (Mäkelä et al., 2001). DMA is also found in freshly

nucleated particles (Smith et al., 2010) creating a need to test how well DMA prop-

erties are understood in current state-of-the-art thermodynamic models when particle

curvature affects the simulated properties.

Paper V tested the ability of the E-AIM model (Wexler and Clegg, 2002) to simulate

the laboratory measured values of hygroscopicity at sub-saturated conditions and with

particle sizes where the Kelvin term (Eq. 2.2) would affect the water partitioning

between the gas and the particle phases.

An example of results from Paper V is shown in Fig. 6.1. The hygroscopic growth of

particles was measured with a nano-hygroscopicity tandem differential mobility ana-

lyzer (nano-HTDMA) (Keskinen et al., 2011; Kim et al., 2016). The experimental setup

included also an Aerodyne Inc., Aerosol Mass specrometer (AMS) (Jayne et al., 2000),

which revealed that the particle compositions differed from the nominal strengths of the

solutions that were atomized to create the studied particles. In addition to dimethy-

lamine, also ammonia (NH3) was found in the particles. Fig. 6.1 shows two calculated

Hygroscopic growth factor (GF) curves. The solid lines are calculated using the nomi-

nal DMA:SA ratio of the solution and the dashed lines are calculated using the AMS

measured composition.

For larger dry particle sizes of 80 nm and 200 nm, hygroscopic growth factors (GF)

calculated with the E-AIM model compared well with the experimental values (Fig.

6.1 c–d) when AMS measured particle composition was used as an input to the E-AIM

model. The same cannot be said when the comparison was done for dry particle sizes

10 and 20 nm, where the GF calculated with the E-AIM model were smaller than their

measured counterparts.

5growth of nanometer sized particles to sizes where they can impact climate. These events are

observed all-around the world (Nieminen et al., 2018).
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Figure 6.1: The measured and simulated hygroscopic growth factors (GF) at a nominal

molar DMA:SA ratio 1:2 in Paper V. The solid line is calculated using the nominal

DMA:SA molar ratio and the dashed line using composition measured with the AMS.

The shaded regions represent the uncertainty of the simulated growth factors. Subfig-

ures show the results for the following dry particle diameters a) 10 nm b) 20 nm c) 80

nm d) 200 nm

The AMS cannot directly measure the two smallest studied dry particle sizes, which

leaves open the possibility that the smaller particles could be more acidic than the

larger ones. The more acidic composition compared to the AMS measurements could

explain the discrepancy between the measured and modelled values hygroscopicity.

The inspection of hygroscopicity growth parameter κ (Petters and Kreidenweis, 2007)

showed size-dependency, which would not be the case if the particles had the same

composition at all dry particle sizes. This result indicated that the composition of the

smallest particles could have differed from the other particles due to evaporation of

basic compounds (DMA and ammonia) in the sampling lines.

In order to investigate the effect of base evaporation in detail, E-AIM was coupled with

a dynamic particle growth model (MABNAG) (Yli-Juuti et al., 2013). The goal was

to test how much of the basic compounds could evaporate and to determine whether

the composition of the particles after evaporation produces the growth factors that

were measured when used as an input to the E-AIM. The results revealed that even
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at conditions that were maximally favorable for evaporation of the basic compounds

in the sampling lines, the composition was not acidic enough to produce the measured

hygroscopicity behavior. Paper V concluded that there are uncertainties in model-

ing the thermodynamics of DMA-containing particles, when the particle size is small

enough for the Kelvin effect to play a role in gas–particle partitioning.
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7 Review of papers and the author’s contribution

Paper I presents a method to estimate volatility distribution and viscosity from

isothermal particle evaporation data of organic aerosol. Both simulated and experimen-

tal data were used to determine the degree to which these properties can be estimated.

I developed the version of the MCGA optimization algorithm used in this study, par-

ticipated in planning the numerical test cases, performed the MCGA calculations and

wrote the paper with contributions from all of the co-authors.

Paper II compares the volatility distributions estimated using the method described

in Paper I and a method based on mass spectrometer data that utilizes the PMF

method. I participated in planning the study, performed all the calculations with the

exception of the PMF analysis and wrote the paper with contributions from all of the

co-authors.

Paper III reports isothermal evaporation measurements of α-pinene derived SOA

particles at three different RH conditions. The volatility distribution and viscosity of

these particles were estimated with a process model optimization scheme similar to that

presented in Paper I. I was responsible for developing and testing the optimization

algorithm and performing the estimation of the VD from the evaporation data. I

participated in writing the methods and interpreting the results.

Paper IV investigates isothermal evaporation of α-pinene derived SOA particles mea-

sured with a similar setup as described in Paper III. The novelty in the paper is

that the measurements were performed at two different temperatures and the SOA

was formed with two different oxidants. The measurements were analyzed with the

process model optimization method presented in Paper I. I participated in the mea-

surements, did all the estimations of VD, viscosity and enthalpy of vaporization, as

well as contributing to the interpretation of the results and to the writing of the paper.

Paper V examined the hygroscopicity of dimethylamine containing particles at differ-

ent RH conditions and particle sizes. The hygroscopicity measurements were compared

to model results calculated with the E-AIM model. I performed the model calculations,

participated in data analysis as well as in the interpretation of the results and wrote

the paper as one of the two first authors.
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8 Conclusions

This thesis studied the characterization of organic aerosol properties by utilizing process

modelling. The volatility distribution and viscosity of organic aerosols, and in detail,

the SOA produced from the oxidation of α-pinene and methods to estimate these

parameters using process modelling techniques and global optimization were studied.

The hygroscopicity of DMA-containing organic aerosols and the capability of a state-

of-the-art thermodynamic equilibrium model to predict the hygroscopicity were also

examined. Below, the findings in this thesis are summarized with respect to the aims

presented in Sect. 1.3.

The process model optimization method described and tested in Paper I is a promising

method to quantify the volatility distribution of organic compounds and the particle

phase mass transfer limitations from isothermal evaporation experiments. However,

care has to be taken when the method is applied. The method might not be applicable

in the presence of too small amounts of data, because there may be too many possible

combinations for the estimated properties that reproduce the measurements when used

as an input to process model. Furthermore, it should be kept in mind that the estimated

properties are influenced by the processes that are or are not taken into account in the

process models themselves.

Paper II compared the volatility distribution of organic compounds obtained using

the method in Paper I to the volatility distribution calculated from FIGAERO-CIMS

measurements using the PMF method. The volatility distributions obtained from evap-

oration measurements showed similarities when the volatility of each PMF factor was

interpreted to be a range of possible values rather than a single value. Combining

the FIGAERO-CIMS data to a characterization of the properties of the SOA with

process models was considered to be an interesting addition when SOA properties

are estimated from isothermal evaporation experiments, since the data constrains the

volatility distribution more than the particle size change data alone.

The volatility distribution of SOA produced from oxidation of α-pinene was estimated

in Papers III–IV by applying the process model optimization method to particle

size change data during isothermal particle evaporation. In order to produce similar

simulated evapograms as those that had been measured, a significant fraction (ca. 40%

by molecule number at the start of the evaporation) of the organics had to have effective

saturation mass concentration below or equal to 10−2 µgm−3, which is consistent with
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the current knowledge of the oxidation products of monoterpenes (Ehn et al., 2014;

Jokinen et al., 2015) and qualitatively to the results reported by other investigators

examining the isothermal evaporation of α-pinene (Wilson et al., 2015).

The mass transfer limitations need to be taken into account when modelling SOA

dynamics at RH below or equal to 40%. The results obtained in Papers III–IV

revealed that the particle phase viscosity started to affect the evaporation once the

compounds with the highest volatility had evaporated from the particle phase. The

threshold viscosity where the particle phase mass transfer limitations started to matter

for 80 nm SOA particles studied in this thesis was quantified to be 104–105 Pa s.

However, as 40% RH is at the lower end of typical ambient RH, it seems that the

volatility of the organic compounds influence the particle dynamics probably more

than the mass transfer limitations.

The isothermal evaporation of α-pinene SOA at two different temperatures studied

in Paper IV showed that in order to model the evaporation correctly at these two

temperatures, enthalpies of vaporization between 1–150 kJ mol−1 were needed.

The results of Paper V revealed that there exists uncertainties in thermodynamic

properties of DMA as a state-of-the-art thermodynamic equilibrium model was unable

to predict the hygroscopicity of DMA containing particles when the particle size was

in the order of a few tens of nanometers.

From the modelling point-of-view there are several issues that could be investigated in

the future. To analyze multiple data sets accurately with the process model optimiza-

tion method, the non-ideality of the particle phase needs to be taken into account. If

the non-ideality is not considered, the properties that are estimated using measure-

ments from one set of evaporation conditions might not produce the correct measured

evapogram at other evaporation conditions. If multiple data sets are analyzed simulta-

neously and the non-ideality is not taken into account, the process model optimization

might not be able to produce accurate estimates for the studied properties.

A good starting point could be to include the activity coefficient of water, but ultimately

the activity coefficients of the other (VD) compounds could also be incorporated. The

non-ideality could also be taken into account when modelling the viscosity of organic

aerosol as was done in the recent study by Gervasi et al. (2019).

Future evaporation studies could concentrate on measuring the evaporation of SOA
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at very low temperatures and with multiple precursors to further quantify the SOA

dynamics throughout the atmosphere. These measurements should be done at as many

different temperatures as possible to help quantify the effect of temperature on both

volatility and viscosity. Future evaporation studies should include modelling of the

evaporation process and report a volatility distribution estimated, for example, with

the process model optimization method described and tested in this thesis.

As DMA is an important constituent of atmospheric particles even on the nanome-

ter scale (Loukonen et al., 2010; Kurtén et al., 2008; Mäkelä et al., 2001) further

investigation are needed to clarify the thermodynamic properties of DMA-containing

solutions. Based on the results emerging from this thesis, the composition and hence

the hygroscopicity of DMA-containing particles with diameters in the rage of few tens

of nanometers is not correctly predicted with a state-of-the-art thermodynamic equi-

librium model. Further laboratory experiments should include measurements of the

particle phase composition as this can differ significantly from the nominal strengths

of solutions that are atomized.
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Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M. (2012). Chemodi-

versity of a Scots pine stand and implications for terpene air concentrations. Bio-

geosciences, 9(2):689–702.

Berkemeier, T., Ammann, M., Krieger, U. K., Peter, T., Spichtinger, P., Pöschl, U.,
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